miércoles, 3 de abril de 2019

SESIÓN TEÓRICA ESTADÍSTICA Y TIC: TEMA 5

 ESTADÍSTICOS UNIVARIABLES: MEDIDAS RESUMEN PARA VARIABLES CUANTITATIVAS. 

1.  MEDIDAS DE TENDENCIA CENTRAL 
Muestran valores alrededor de los cuales el resto de los datos tienen tendencia a agruparse.
- Media aritmética o media (x): Centro geométrico o de gravedad de nuestros datos. (Para variables cuantitativas).


           Cuando los datos son agrupados: 






- Mediana:  Es el valor de la observación tal que un 50% de los datos es menor y otro 50% es mayor. Sólo tiene en cuenta la posición de los valores en la muestra y por tanto tiene mucho mejor comportamiento que la media cuando hay observaciones extremas. (Para variables cuantitativas).

          ⇨ Si el número de observaciones es impar: valor = (n/2) +1. POSICIÓN


          Si es par:  valor = media entre la observación n/2 y la observación (n/2) +1. POSICIÓN



- Moda: Valor que más veces se repite. (Para variables cuantitativas y cualitativas).

          ⇨ Si hay dos modas: bimodal.
          
          ⇨ Si hay más de dos: multimodal.



2.  MEDIDAS DE POSICIÓN

Cuantiles: es la medida más general. (Para variables continuas). Sólo tiene en cuenta la posición de los valores en la muestra. Se clasifican en: cuartiles, deciles y percentiles.


Os adjunto un vídeo que lo explica bastante claro y esquemático:







3. MEDIDAS DE DISPERSIÓN

⇨ Rango o recorrido: Diferencia entre el mayor y el menor valor de la muestra: |xn-x1|
 

⇨ Desviación media: media aritmética de las distancias de cada observación con respecto a la media de la muestra:

   


⇨ Desviación típica: cuantifica el error que cometemos si representamos una muestra únicamente por su media:

   



Varianza: expresa la misma información en valores cuadráticos:



 Recorrido intercuartílico: Diferencia entre el tercer y el primer cuartil: |Q3-Q1|




 Coeficiente de variación:  
c.v.=s/x




Para entender mejor esta parte realizaremos un ejemplo práctico:





4. DISTRIBUCIONES NORMALES

- En estadística se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en fenómenos reales.

- La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de los valores de posición central (media, mediana y moda, que coinciden en estas distribuciones).

- Esta curva se conoce como la campana de Gauss.





5. ASIMETRÍA Y CURTOSIS

Os adjunto un vídeo que lo explica fenomenal!!!




No hay comentarios:

Publicar un comentario

REFLEXIÓN Y CONCLUSIÓN FINAL

Para concluir y a modo de reflexión final, me gustaría dejar constancia de lo importante e imprescindible que ha sido para mí la estadístic...